(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

+(x, 0) → x
+(x, i(x)) → 0
+(+(x, y), z) → +(x, +(y, z))
*(x, +(y, z)) → +(*(x, y), *(x, z))
*(+(x, y), z) → +(*(x, z), *(y, z))

Rewrite Strategy: INNERMOST

(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted CpxTRS to CDT

(2) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(z0, i(z0)) → 0
+(+(z0, z1), z2) → +(z0, +(z1, z2))
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z0, z2), *(z1, z2))
Tuples:

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
S tuples:

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
K tuples:none
Defined Rule Symbols:

+, *

Defined Pair Symbols:

+', *'

Compound Symbols:

c2, c3, c4

(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
We considered the (Usable) Rules:

*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z0, z2), *(z1, z2))
+(z0, 0) → z0
+(z0, i(z0)) → 0
+(+(z0, z1), z2) → +(z0, +(z1, z2))
And the Tuples:

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = [1] + [2]x2 + [3]x22   
POL(*'(x1, x2)) = [2] + x1 + x2 + [2]x1·x2   
POL(+(x1, x2)) = [3] + [2]x1 + [3]x2 + [3]x22 + x1·x2 + [3]x12   
POL(+'(x1, x2)) = 0   
POL(0) = 0   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2, x3)) = x1 + x2 + x3   
POL(c4(x1, x2, x3)) = x1 + x2 + x3   
POL(i(x1)) = 0   

(4) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(z0, i(z0)) → 0
+(+(z0, z1), z2) → +(z0, +(z1, z2))
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z0, z2), *(z1, z2))
Tuples:

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
S tuples:

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
K tuples:

*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
Defined Rule Symbols:

+, *

Defined Pair Symbols:

+', *'

Compound Symbols:

c2, c3, c4

(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^2))) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
We considered the (Usable) Rules:

*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z0, z2), *(z1, z2))
+(z0, 0) → z0
+(z0, i(z0)) → 0
+(+(z0, z1), z2) → +(z0, +(z1, z2))
And the Tuples:

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(*(x1, x2)) = x1 + x2 + [3]x1·x2   
POL(*'(x1, x2)) = [1] + x1 + x2 + [3]x1·x2   
POL(+(x1, x2)) = [1] + [3]x1 + x2   
POL(+'(x1, x2)) = [2]x1   
POL(0) = [3]   
POL(c2(x1, x2)) = x1 + x2   
POL(c3(x1, x2, x3)) = x1 + x2 + x3   
POL(c4(x1, x2, x3)) = x1 + x2 + x3   
POL(i(x1)) = [3]   

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

+(z0, 0) → z0
+(z0, i(z0)) → 0
+(+(z0, z1), z2) → +(z0, +(z1, z2))
*(z0, +(z1, z2)) → +(*(z0, z1), *(z0, z2))
*(+(z0, z1), z2) → +(*(z0, z2), *(z1, z2))
Tuples:

+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
S tuples:none
K tuples:

*'(z0, +(z1, z2)) → c3(+'(*(z0, z1), *(z0, z2)), *'(z0, z1), *'(z0, z2))
*'(+(z0, z1), z2) → c4(+'(*(z0, z2), *(z1, z2)), *'(z0, z2), *'(z1, z2))
+'(+(z0, z1), z2) → c2(+'(z0, +(z1, z2)), +'(z1, z2))
Defined Rule Symbols:

+, *

Defined Pair Symbols:

+', *'

Compound Symbols:

c2, c3, c4

(7) SIsEmptyProof (EQUIVALENT transformation)

The set S is empty

(8) BOUNDS(O(1), O(1))